178 research outputs found

    Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date

    Get PDF
    KEY MESSAGE: Genomic analysis of Mediterranean oats reveals high genetic diversity and three loci for adaptation to this environment. This information together with phenotyping and passport data, gathered in an interactive map, will be a vital resource for oat genetic improvement. ABSTRACT: During the twentieth century, oat landraces have increasingly been replaced by modern cultivars, resulting in loss of genetic diversity. However, landraces have considerable potential to improve disease and abiotic stress tolerance and may outperform cultivars under low input systems. In this work, we assembled a panel of 669 oat landraces from Mediterranean rim and 40 cultivated oat varieties and performed the first large-scale population genetic analysis of both red and white oat types of Mediterranean origin. We created a public database associated with an interactive map to visualize information for each accession. The oat collection was genotyped with 17,288 single-nucleotide polymorphism (SNP) loci to evaluate population structure and linkage disequilibrium (LD); to perform a genome-wide association study (GWAs) for heading date, a key character closely correlated with performance in this drought-prone area. Population genetic analysis using both structure and PCA distinguished two main groups composed of the red and white oats, respectively. The white oat group was further divided into two subgroups. LD decay was slower within white lines in linkage groups Mrg01, 02, 04, 12, 13, 15, 23, 33, whereas it was slower within red lines in Mrg03, 05, 06, 11, 21, 24, and 28. Association analysis showed several significant markers associated with heading date on linkage group Mrg13 in white oats and on Mrg01 and Mrg08 in red oats. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00122-021-03805-2

    Implementing within‐cross genomic prediction to reduce oat breeding costs

    Get PDF
    A barrier to the adoption of genomic prediction in small breeding programs is the initial cost of genotyping material. Although decreasing, marker costs are usually higher than field trial costs. In this study we demonstrate the utility of stratifying a narrow‐base biparental oat population genotyped with a modest number of markers to employ genomic prediction at early and later generations. We also show that early generation genotyping data can reduce the number of lines for later phenotyping based on selections of siblings to progress. Using sets of small families selected at an early generation could enable the use of genomic prediction for adaptation to multiple target environments at an early stage in the breeding program. In addition, we demonstrate that mixed marker data can be effectively integrated to combine cheap dominant marker data (including legacy data) with more expensive but higher density codominant marker data in order to make within generation and between lineage predictions based on genotypic information. Taken together, our results indicate that small programs can test and initiate genomic predictions using sets of stratified, narrow‐base populations and incorporating low density legacy genotyping data. This can then be scaled to include higher density markers and a broadened population base

    The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Get PDF
    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ~300 km s^(–1) to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

    Get PDF
    We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and conclusions unchanged

    The SDSS-IV MaNGA sample : design, optimization, and usage considerations

    Get PDF
    We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing S/N, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend oni-band absolute magnitude (Mi), or, for a small subset of our sample, Mi and color (NUV-i). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to Mi and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (Re),respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range 5 x 108 ≤ M⋆ ≤ 3 x 1011 M⊙ /h2 and are sampled at median physical resolutions of 1.37 kpc and 2.5 kpc for the Primary and Secondary samples respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume limited sample.PostprintPeer reviewe

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample

    Get PDF
    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe

    Quasar Clustering from SDSS DR5: Dependences on Physical Properties

    Full text link
    Using a homogenous sample of 38,208 quasars with a sky coverage of 4000deg24000 {\rm deg^2} drawn from the SDSS Data Release Five quasar catalog, we study the dependence of quasar clustering on luminosity, virial black hole mass, quasar color, and radio loudness. At z<2.5z<2.5, quasar clustering depends weakly on luminosity and virial black hole mass, with typical uncertainty levels 10\sim 10% for the measured correlation lengths. These weak dependences are consistent with models in which substantial scatter between quasar luminosity, virial black hole mass and the host dark matter halo mass has diluted any clustering difference, where halo mass is assumed to be the relevant quantity that best correlates with clustering strength. However, the most luminous and most massive quasars are more strongly clustered (at the 2σ\sim 2\sigma level) than the remainder of the sample, which we attribute to the rapid increase of the bias factor at the high-mass end of host halos. We do not observe a strong dependence of clustering strength on quasar colors within our sample. On the other hand, radio-loud quasars are more strongly clustered than are radio-quiet quasars matched in redshift and optical luminosity (or virial black hole mass), consistent with local observations of radio galaxies and radio-loud type 2 AGN. Thus radio-loud quasars reside in more massive and denser environments in the biased halo clustering picture. Using the Sheth et al.(2001) formula for the linear halo bias, the estimated host halo mass for radio-loud quasars is 1013h1M\sim 10^{13} h^{-1}M_\odot, compared to 2×1012h1M\sim 2\times 10^{12} h^{-1}M_\odot for radio-quiet quasar hosts at z1.5z\sim 1.5.Comment: Updated version; accepted for publication in Ap

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples

    Get PDF
    We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7σ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, rd, which has a value of rd,fid = 149.28 Mpc in our fiducial cosmology. We find DV = (1264 ± 25 Mpc)(rd/rd,fid) at z = 0.32 and DV = (2056 ± 20 Mpc)(rd/rd,fid) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of DA = (1421 ± 20 Mpc)(rd/rd,fid) and H = (96.8 ± 3.4 km s−1 Mpc−1)(rd,fid/rd). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.Publisher PDFPeer reviewe
    corecore